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Motivation

• Task-vector based model merging combines multiple 
single-task models into a single merged model that is 
capable of multi-task learning, without the need for 
sharing training data or any further training. 

• The scaling coefficient for each task determines the relative 
performance of the merged model on that task 
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• However, practitioners might have different preferences 
for the tasks, leading to trade-offs in how to merge the 
models. A set of Pareto optimal solutions is preferable. 

Key observation

MAP is able to find 
diverse Pareto front, not 
captured by other single 
merged model baselines. 
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• We propose MAP, a computationally efficient method to identify 
Pareto fronts, allowing trade-offs without requiring additional training.
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• Because of symmetry of A, the number of variables need to estimate is ,-( ,-)
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• Since we already have the 𝒄 and 𝑀!(𝒄), it can be formulated as a linear regression, with 

  X = 𝒄𝟏𝟐, 𝒄𝟐𝟐, … , 𝒄𝑻𝟐 , 𝒄𝟏𝒄𝟐, 𝒄𝟏𝒄𝟑, … , 𝒄𝑻&𝟏𝒄𝑻, 𝒄𝟏, 𝒄𝟐, … , 𝒄𝑻, 𝟏 	 and y = 𝑴𝒊 𝜽𝒎 𝒄

• Closed form solution: X)X &*X)y

ResultsMethod

• Fine-tuned models tend to converge near the pre-
trained model in parameter space.

For higher dimensions, where we cannot visualize 
the Pareto front, the win rate is used to measure 
how often MAP outperforms other methods in terms 
of Pareto front solutions across tasks.2nd order Taylor expansion 
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• However, computing a Pareto 
front using conventional method 
involves many inferences and 
time-consuming

This motivates us to use 
second-order Taylor 
expansion to approximate the 
evaluation metrics for each 
task given a merged model
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